华图教育-第一公务员考试网

0771-2808922 广西分校

1.两次相遇公式:单岸型  S=(3S1+S2)/2    两岸型  S=3S1-S2

例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸400 米处又重新相遇。问:该河的宽度是多少?
A. 1120 米  B. 1280 米  C. 1520 米  D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸

2.漂流瓶公式:T=2t*t顺)/ t-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
  A、3天B、21天C、24天D、木筏无法自己漂到B城
  解:公式代入直接求得24

3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ t1+t2   车速/人速=(t1+t2)/ (t2-t1)

例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的(  )倍?
A. 3     B.4    C.   5   D.6
解:车速/人速=(10+6)/(10-6)=4 选B

4.往返运动问题公式:V=(2v1*v2)/(v1+v2)

例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?(  )
A.24    B.24.5       C.25      D.25.5
解:代入公式得2*30*20/(30+20)=24选A

5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间        (顺)
           能看到级数=(人速-电梯速度)*逆行运动所需时间         (逆)

6.什锦糖问题公式:均价A=n /{(1/a1+(1/a2)+(1/a3)+(1/an)
  
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦
糖,那么这种什锦糖每千克成本多少元?
A.4.8 元B.5 元C.5.3 元D.5.5 元

7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:  
析:男生平均分X,女生1.2X  
1.2X         75-X        1  
       75            =  
X           1.2X-75     1.8  
得X=70 女生为84

8.N人传接球M次公式:次数=N-1)的M次方/N 最接近的整数为末次传他人次数,第
   二接近的整数为末次传给自己的次数
  
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
        A. 60种B. 65种C. 70种D. 75种  
    公式解题:(4-1)的5次方/ 4=60.75   最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数

9.一根绳连续对折N次,从中剪M刀,则被剪成(2N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方   NN列最外层有4N-4
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625

11.过河问题:M个人过河,船能载N个人。需要A个人划船,共需过河(M-A/ (N-A)

例题(广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?  ()
A.7    B. 8     C.9     D.10
解:(37-1)/(5-1)=9

12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28
  
日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算

例:2002年9月1号是星期日  2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。

例:2004年2月28日是星期六,那么2008年2月28日是星期几?  
4+1=5,即是过5天,为星期四。(08年2 月29日没到)

13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数

例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?(  )
A.10.32             B.10.44        C.10.50      D10.61
两年利息为(1+2%)的平方*10-10=0.404   税后的利息为0.404*(1-20%)约等于0.323,则提取出的本金合计约为10.32万元

14.牛吃草问题:草场原有草量=(牛数-每天长草量)*天数

例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?
A、16 B、20 C、24 D、28

解:(10-X)*8=(8-X)*12 求得X=4  (10-4)*8=(6-4)*Y 求得答案Y=24   公式熟练以后可以不设方程直接求出来

15.植树问题:线型棵数=总长/间隔+1  环型棵数=总长/间隔  楼间棵数=总长/间隔-1
    例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树?
           A 93      B 95      C 96      D 99

16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1  淘汰赛需决前四名场次=N
    
单循环赛场次为组合N人中取2  双循环赛场次为排列N人中排2

 

比赛赛制

比赛场次

循环赛

单循环赛

参赛选手数×(参赛选手数-1 )/2 

双循环赛

参赛选手数×(参赛选手数-1 )

淘汰赛

只决出冠(亚)军

参赛选手数-1

要求决出前三(四)名

参赛选手数


1. 100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?(    )
A. 95               B. 97               C. 98               D. 99
【解析】答案为C。在此完全不必考虑男女运动员各自的人数,只需考虑把除男女冠军以外的人淘汰掉就可以了,因此比赛场次是100-2=98(场)。

 2.  某机关打算在系统内举办篮球比赛,采用单循环赛制,根据时间安排,只能进行21场比赛,请问最多能有几个代表队参赛?(    )
   A. 6                B. 7                C. 12               D. 14
 【解析】答案为B。根据公式,采用单循环赛的比赛场次=参赛选手数×(参赛选手数-1 )/2,因此在21场比赛的限制下,参赛代表队最多只能是7队。

 3.  某次比赛共有32名选手参加,先被平均分成8组,以单循环的方式进行小组赛;每组前2名队员再进行淘汰赛,直到决出冠军。请问,共需安排几场比赛?(    )    A. 48                B. 63              C. 64               D. 65
【解析】答案为B。根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。最后,总的比赛场次是48+15=63(场)。

 4.  某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?(    )
A. 23               B. 24               C. 41               D. 42
【解析】答案为A。根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=23(天)。

(责任编辑:广西华图)

    经典图书

    • 国考新大纲系列
    • 名师模块教材
    • 面试教材系列
    • 广西区考教材
    • 华图教你赢系列
    • 热门分站
    • 热门地市
    • 热门考试
    • 热门信息
    • 热门推荐
    • 申论
    • 行测
    • 面试